Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
J Biomed Opt ; 29(Suppl 3): S33302, 2024 Jun.
Article En | MEDLINE | ID: mdl-38707651

Significance: Cerebral oximeters have the potential to detect abnormal cerebral blood oxygenation to allow for early intervention. However, current commercial systems have two major limitations: (1) spatial coverage of only the frontal region, assuming that surgery-related hemodynamic effects are global and (2) susceptibility to extracerebral signal contamination inherent to continuous-wave near-infrared spectroscopy (NIRS). Aim: This work aimed to assess the feasibility of a high-density, time-resolved (tr) NIRS device (Kernel Flow) to monitor regional oxygenation changes across the cerebral cortex during surgery. Approach: The Flow system was assessed using two protocols. First, digital carotid compression was applied to healthy volunteers to cause a rapid oxygenation decrease across the ipsilateral hemisphere without affecting the contralateral side. Next, the system was used on patients undergoing shoulder surgery to provide continuous monitoring of cerebral oxygenation. In both protocols, the improved depth sensitivity of trNIRS was investigated by applying moment analysis. A dynamic wavelet filtering approach was also developed to remove observed temperature-induced signal drifts. Results: In the first protocol (28±5 years; five females, five males), hair significantly impacted regional sensitivity; however, the enhanced depth sensitivity of trNIRS was able to separate brain and scalp responses in the frontal region. Regional sensitivity was improved in the clinical study given the age-related reduction in hair density of the patients (65±15 years; 14 females, 13 males). In five patients who received phenylephrine to treat hypotension, different scalp and brain oxygenation responses were apparent, although no regional differences were observed. Conclusions: The Kernel Flow has promise as an intraoperative neuromonitoring device. Although regional sensitivity was affected by hair color and density, enhanced depth sensitivity of trNIRS was able to resolve differences in scalp and brain oxygenation responses in both protocols.


Cerebrovascular Circulation , Spectroscopy, Near-Infrared , Humans , Spectroscopy, Near-Infrared/methods , Spectroscopy, Near-Infrared/instrumentation , Female , Male , Adult , Cerebrovascular Circulation/physiology , Hemodynamics/physiology , Oximetry/methods , Oximetry/instrumentation , Oxygen/blood , Oxygen/metabolism , Brain/diagnostic imaging , Brain/blood supply , Equipment Design
2.
J Appl Physiol (1985) ; 135(4): 717-725, 2023 10 01.
Article En | MEDLINE | ID: mdl-37560766

The aim of the current study was to establish the interplay between blood flow patterns within a large cerebral artery and a downstream microvascular segment under conditions of transiently reduced mean arterial pressure (MAP). We report data from nine young, healthy participants (5 women; 26 ± 4 yr) acquired during a 15-s bout of sudden-onset lower body negative pressure (LBNP; -80 mmHg). Simultaneous changes in microvascular cerebral blood flow (CBF) and middle cerebral artery blood velocity (MCAvmean) were captured using diffuse correlation spectroscopy (DCS) and transcranial Doppler ultrasound (TCD), respectively. Brachial blood pressure (finger photoplethysmography) and TCD waveforms were extracted at baseline and during the nadir blood pressure (BP) response to LBNP and analyzed using a modified Windkessel model to calculate indices of cerebrovascular resistance (Ri) and compliance (Ci). Compared with baseline, rapid-onset LBNP decreased MAP by 22 ± 16% and Ri by 14 ± 10% (both P ≤ 0.03). Ci increased (322 ± 298%; P < 0.01) but MCAvmean (-8 ± 16%; P = 0.09) and CBF (-2 ± 3%; P = 0.29) were preserved. The results provide evidence that changes in both vascular resistance and compliance preserve CBF, as indexed by no significant changes in MCAvmean or DCS microvascular flow, during transient hypotension.NEW & NOTEWORTHY To characterize the relationship between cerebrovascular patterns within the large middle cerebral artery (MCA) and a downstream microvascular segment, we used a novel combination of transcranial Doppler ultrasound of the MCA and optical monitoring of a downstream microvascular segment, respectively, under conditions of transiently reduced mean arterial pressure (i.e., lower body negative pressure, -80 mmHg). A rapid increase in vessel compliance accompanied the maintenance of MCA blood velocity and downstream microvascular flow.


Cerebrovascular Circulation , Hypotension , Humans , Female , Cerebrovascular Circulation/physiology , Hemodynamics , Blood Pressure/physiology , Middle Cerebral Artery , Ultrasonography, Doppler, Transcranial , Blood Flow Velocity
3.
Neurophotonics ; 10(2): 025013, 2023 Apr.
Article En | MEDLINE | ID: mdl-37284246

Significance: Combining diffuse correlation spectroscopy (DCS) and near-infrared spectroscopy (NIRS) permits simultaneous monitoring of multiple cerebral hemodynamic parameters related to cerebral autoregulation; however, interpreting these optical measurements can be confounded by signal contamination from extracerebral tissue. Aim: We aimed to evaluate extracerebral signal contamination in NIRS/DCS data acquired during transient hypotension and assess suitable means of separating scalp and brain signals. Approach: A hybrid time-resolved NIRS/multidistance DCS system was used to simultaneously acquire cerebral oxygenation and blood flow data during transient orthostatic hypotension induced by rapid-onset lower body negative pressure (LBNP) in nine young, healthy adults. Changes in microvascular flow were verified against changes in middle cerebral artery velocity (MCAv) measured by transcranial Doppler ultrasound. Results: LBNP significantly decreased arterial blood pressure (-18%±14%), scalp blood flow (>30%), and scalp tissue oxygenation (all p≤0.04 versus baseline). However, implementing depth-sensitive techniques for both DCS and time-resolved NIRS indicated that LBNP did not significantly alter microvascular cerebral blood flow and oxygenation relative to their baseline values (all p≥0.14). In agreement, there was no significant reduction in MCAv (8%±16%; p=0.09). Conclusion: Transient hypotension caused significantly larger blood flow and oxygenation changes in the extracerebral tissue compared to the brain. We demonstrate the importance of accounting for extracerebral signal contamination within optical measures of cerebral hemodynamics during physiological paradigms designed to test cerebral autoregulation.

4.
Metabolites ; 12(9)2022 Aug 31.
Article En | MEDLINE | ID: mdl-36144221

Near-infrared spectroscopy (NIRS) measurements of tissue oxygen saturation (StO2) are frequently used during vascular and cardiac surgeries as a non-invasive means of assessing brain health; however, signal contamination from extracerebral tissues remains a concern. As an alternative, hyperspectral (hs)NIRS can be used to measure changes in the oxidation state of cytochrome c oxidase (ΔoxCCO), which provides greater sensitivity to the brain given its higher mitochondrial concentration versus the scalp. The purpose of this study was to evaluate the depth sensitivity of the oxCCO signal to changes occurring in the brain and extracerebral tissue components. The oxCCO assessment was conducted using multi-distance hsNIRS (source-detector separations = 1 and 3 cm), and metabolic changes were compared to changes in StO2. Ten participants were monitored using an in-house system combining hsNIRS and diffuse correlation spectroscopy (DCS). Data were acquired during carotid compression (CC) to reduce blood flow and hypercapnia to increase flow. Reducing blood flow by CC resulted in a significant decrease in oxCCO measured at rSD = 3 cm but not at 1 cm. In contrast, significant changes in StO2 were found at both distances. Hypercapnia caused significant increases in StO2 and oxCCO at rSD = 3 cm, but not at 1 cm. Extracerebral contamination resulted in elevated StO2 but not oxCCO after hypercapnia, which was significantly reduced by applying regression analysis. This study demonstrated that oxCCO was less sensitive to extracerebral signals than StO2.

5.
Neurophotonics ; 9(3): 035001, 2022 Jul.
Article En | MEDLINE | ID: mdl-35874144

Significance: Hyperspectral near-infrared spectroscopy (hsNIRS) combined with diffuse correlation spectroscopy (DCS) provides a noninvasive approach for monitoring cerebral blood flow (CBF), the cerebral metabolic rate of oxygen ( CMRO 2 ) and the oxidation state of cytochrome-c-oxidase (oxCCO). CMRO 2 is calculated by combining tissue oxygen saturation ( S t O 2 ) with CBF, whereas oxCCO can be measured directly by hsNIRS. Although both reflect oxygen metabolism, a direct comparison has yet to be studied. Aim: We aim to investigate the relationship between CMRO 2 and oxCCO during periods of restricted oxygen delivery and lower metabolic demand. Approach: A hybrid hsNIRS/DCS system was used to measure hemodynamic and metabolic responses in piglets exposed to cerebral ischemia and anesthetic-induced reductions in brain activity. Results: Although a linear relationship was observed between CMRO 2 and oxCCO during ischemia, both exhibited a nonlinear relationship with respect to CBF. In contrast, linear correlation was sufficient to characterize the relationships between CMRO 2 and CBF and between the two metabolic markers during reduced metabolic demand. Conclusions: The observed relationship between CMRO 2 and oxCCO during periods of restricted oxygen delivery and lower metabolic demand indicates that the two metabolic markers are strongly correlated.

6.
Sci Rep ; 12(1): 181, 2022 01 07.
Article En | MEDLINE | ID: mdl-34996949

A major concern with preterm birth is the risk of neurodevelopmental disability. Poor cerebral circulation leading to periods of hypoxia is believed to play a significant role in the etiology of preterm brain injury, with the first three days of life considered the period when the brain is most vulnerable. This study focused on monitoring cerebral perfusion and metabolism during the first 72 h after birth in preterm infants weighing less than 1500 g. Brain monitoring was performed by combining hyperspectral near-infrared spectroscopy to assess oxygen saturation and the oxidation state of cytochrome c oxidase (oxCCO), with diffuse correlation spectroscopy to monitor cerebral blood flow (CBF). In seven of eight patients, oxCCO remained independent of CBF, indicating adequate oxygen delivery despite any fluctuations in cerebral hemodynamics. In the remaining infant, a significant correlation between CBF and oxCCO was found during the monitoring periods on days 1 and 3. This infant also had the lowest baseline CBF, suggesting the impact of CBF instabilities on metabolism depends on the level of blood supply to the brain. In summary, this study demonstrated for the first time how continuous perfusion and metabolic monitoring can be achieved, opening the possibility to investigate if CBF/oxCCO monitoring could help identify preterm infants at risk of brain injury.


Brain/blood supply , Brain/enzymology , Cerebrovascular Circulation , Electron Transport Complex IV/metabolism , Infant, Premature , Optical Imaging , Oxygen Consumption , Oxygen/blood , Spectroscopy, Near-Infrared , Birth Weight , Enzyme Stability , Female , Gestational Age , Humans , Infant, Newborn , Infant, Very Low Birth Weight , Male , Oxidation-Reduction , Predictive Value of Tests , Proof of Concept Study , Time Factors
7.
Biomed Opt Express ; 12(10): 6442-6460, 2021 Oct 01.
Article En | MEDLINE | ID: mdl-34745748

Time-resolved (TR) spectroscopy is well-suited to address the challenges of quantifying light absorbers in highly scattering media such as living tissue; however, current TR spectrometers are either based on expensive array detectors or rely on wavelength scanning. Here, we introduce a TR spectrometer architecture based on compressed sensing (CS) and time-correlated single-photon counting. Using both CS and basis scanning, we demonstrate that-in homogeneous and two-layer tissue-mimicking phantoms made of Intralipid and Indocyanine Green-the CS method agrees with or outperforms uncompressed approaches. Further, we illustrate the superior depth sensitivity of TR spectroscopy and highlight the potential of the device to quantify absorption changes in deeper (>1 cm) tissue layers.

8.
Front Hum Neurosci ; 15: 703405, 2021.
Article En | MEDLINE | ID: mdl-34305558

Over the last few decades, neuroimaging techniques have transformed our understanding of the brain and the effect of neurological conditions on brain function. More recently, light-based modalities such as functional near-infrared spectroscopy have gained popularity as tools to study brain function at the bedside. A recent application is to assess residual awareness in patients with disorders of consciousness, as some patients retain awareness albeit lacking all behavioural response to commands. Functional near-infrared spectroscopy can play a vital role in identifying these patients by assessing command-driven brain activity. The goal of this review is to summarise the studies reported on this topic, to discuss the technical and ethical challenges of working with patients with disorders of consciousness, and to outline promising future directions in this field.

9.
Biomed Opt Express ; 11(10): 5967-5981, 2020 Oct 01.
Article En | MEDLINE | ID: mdl-33149999

During cardiac surgery with cardiopulmonary bypass (CPB), adequate maintenance of cerebral blood flow (CBF) is vital in preventing postoperative neurological injury - i.e. stroke, delirium, cognitive impairment. Reductions in CBF large enough to impact cerebral energy metabolism can lead to tissue damage and subsequent brain injury. Current methods for neuromonitoring during surgery are limited. This study presents the clinical translation of a hybrid optical neuromonitor for continuous intraoperative monitoring of cerebral perfusion and metabolism in ten patients undergoing non-emergent cardiac surgery with non-pulsatile CPB. The optical system combines broadband near-infrared spectroscopy (B-NIRS) to measure changes in the oxidation state of cytochrome c oxidase (oxCCO) - a direct marker of cellular energy metabolism - and diffuse correlation spectroscopy (DCS) to provide an index of cerebral blood flow (CBFi). As the heart was arrested and the CPB-pump started, increases in CBFi (88.5 ± 125.7%) and significant decreases in oxCCO (-0.5 ± 0.2 µM) were observed; no changes were noted during transitions off CPB. Fifteen hypoperfusion events, defined as large and sustained reductions in CPB-pump flow rate, were identified across all patients and resulted in significant decreases in perfusion and metabolism when mean arterial pressure dropped to 30 mmHg or below. The maximum reduction in cerebral blood flow preceded the corresponding metabolic reduction by 18.2 ± 15.0 s. Optical neuromonitoring provides a safe and non-invasive approach for assessing intraoperative perfusion and metabolism and has potential in guiding patient management to prevent adverse clinical outcomes.

10.
Neurophotonics ; 7(4): 045002, 2020 Oct.
Article En | MEDLINE | ID: mdl-33062801

Significance: Near-infrared spectroscopy (NIRS) combined with diffuse correlation spectroscopy (DCS) provides a noninvasive approach for monitoring cerebral blood flow (CBF), oxygenation, and oxygen metabolism. However, these methods are vulnerable to signal contamination from the scalp. Our work evaluated methods of reducing the impact of this contamination using time-resolved (TR) NIRS and multidistance (MD) DCS. Aim: The magnitude of scalp contamination was evaluated by measuring the flow, oxygenation, and metabolic responses to a global hemodynamic challenge. Contamination was assessed by collecting data with and without impeding scalp blood flow. Approach: Experiments involved healthy participants. A pneumatic tourniquet was used to cause scalp ischemia, as confirmed by contrast-enhanced NIRS, and a computerized gas system to generate a hypercapnic challenge. Results: Comparing responses acquired with and without the tourniquet demonstrated that the TR-NIRS technique could reduce scalp contributions in hemodynamic signals up to 4 times ( r SD = 3 cm ) and 6 times ( r SD = 4 cm ). Similarly, blood flow responses from the scalp and brain could be separated by analyzing MD DCS data with a multilayer model. Using these techniques, there was no change in metabolism during hypercapnia, as expected, despite large increases in CBF and oxygenation. Conclusion: NIRS/DCS can accurately monitor CBF and metabolism with the appropriate enhancement to depth sensitivity, highlighting the potential of these techniques for neuromonitoring.

11.
Biomed Opt Express ; 11(8): 4571-4585, 2020 Aug 01.
Article En | MEDLINE | ID: mdl-32923065

This study presents the characterization of dynamic cerebrovascular reactivity (CVR) in healthy adults by a hybrid optical system combining time-resolved (TR) near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS). Blood flow and oxygenation (oxy- and deoxy-hemoglobin) responses to a step hypercapnic challenge were recorded to characterize dynamic and static components of CVR. Data were acquired at short and long source-detector separations (r SD) to assess the impact of scalp hemodynamics, and moment analysis applied to the TR-NIRS to further enhance the sensitivity to the brain. Comparing blood flow and oxygenation responses acquired at short and long r SD demonstrated that scalp contamination distorted the CVR time courses, particularly for oxyhemoglobin. This effect was significantly diminished by the greater depth sensitivity of TR NIRS and less evident in the DCS data due to the higher blood flow in the brain compared to the scalp. The reactivity speed was similar for blood flow and oxygenation in the healthy brain. Given the ease-of-use, portability, and non-invasiveness of this hybrid approach, it is well suited to investigate if the temporal relationship between CBF and oxygenation is altered by factors such as age and cerebrovascular disease.

12.
Brain Sci ; 10(7)2020 Jul 15.
Article En | MEDLINE | ID: mdl-32679665

Post-hemorrhagic ventricular dilatation (PHVD) is characterized by a build-up of cerebral spinal fluid (CSF) in the ventricles, which increases intracranial pressure and compresses brain tissue. Clinical interventions (i.e., ventricular taps, VT) work to mitigate these complications through CSF drainage; however, the timing of these procedures remains imprecise. This study presents Neonatal NeuroMonitor (NNeMo), a portable optical device that combines broadband near-infrared spectroscopy (B-NIRS) and diffuse correlation spectroscopy (DCS) to provide simultaneous assessments of cerebral blood flow (CBF), tissue saturation (StO2), and the oxidation state of cytochrome c oxidase (oxCCO). In this study, NNeMo was used to monitor cerebral hemodynamics and metabolism in PHVD patients selected for a VT. Across multiple VTs in four patients, no significant changes were found in any of the three parameters: CBF increased by 14.6 ± 37.6% (p = 0.09), StO2 by 1.9 ± 4.9% (p = 0.2), and oxCCO by 0.4 ± 0.6 µM (p = 0.09). However, removing outliers resulted in significant, but small, increases in CBF (6.0 ± 7.7%) and oxCCO (0.1 ± 0.1 µM). The results of this study demonstrate NNeMo's ability to provide safe, non-invasive measurements of cerebral perfusion and metabolism for neuromonitoring applications in the neonatal intensive care unit.

13.
Front Neurosci ; 14: 105, 2020.
Article En | MEDLINE | ID: mdl-32132894

Brain-computer interfaces (BCIs) are becoming increasingly popular as a tool to improve the quality of life of patients with disabilities. Recently, time-resolved functional near-infrared spectroscopy (TR-fNIRS) based BCIs are gaining traction because of their enhanced depth sensitivity leading to lower signal contamination from the extracerebral layers. This study presents the first account of TR-fNIRS based BCI for "mental communication" on healthy participants. Twenty-one (21) participants were recruited and were repeatedly asked a series of questions where they were instructed to imagine playing tennis for "yes" and to stay relaxed for "no." The change in the mean time-of-flight of photons was used to calculate the change in concentrations of oxy- and deoxyhemoglobin since it provides a good compromise between depth sensitivity and signal-to-noise ratio. Features were extracted from the average oxyhemoglobin signals to classify them as "yes" or "no" responses. Linear-discriminant analysis (LDA) and support vector machine (SVM) classifiers were used to classify the responses using the leave-one-out cross-validation method. The overall accuracies achieved for all participants were 75% and 76%, using LDA and SVM, respectively. The results also reveal that there is no significant difference in accuracy between questions. In addition, physiological parameters [heart rate (HR) and mean arterial pressure (MAP)] were recorded on seven of the 21 participants during motor imagery (MI) and rest to investigate changes in these parameters between conditions. No significant difference in these parameters was found between conditions. These findings suggest that TR-fNIRS could be suitable as a BCI for patients with brain injuries.

14.
J Cereb Blood Flow Metab ; 40(8): 1672-1684, 2020 08.
Article En | MEDLINE | ID: mdl-31500522

The purpose of this study was to assess the accuracy of absolute cerebral blood flow (CBF) measurements obtained by dynamic contrast-enhanced (DCE) near-infrared spectroscopy (NIRS) using indocyanine green as a perfusion contrast agent. For validation, CBF was measured independently using the MRI perfusion method arterial spin labeling (ASL). Data were acquired at two sites and under two flow conditions (normocapnia and hypercapnia). Depth sensitivity was enhanced using time-resolved detection, which was demonstrated in a separate set of experiments using a tourniquet to temporally impede scalp blood flow. A strong correlation between CBF measurements from ASL and DCE-NIRS was observed (slope = 0.99 ± 0.08, y-intercept = -1.7 ± 7.4 mL/100 g/min, and R2 = 0.88). Mean difference between the two techniques was 1.9 mL/100 g/min (95% confidence interval ranged from -15 to 19 mL/100g/min and the mean ASL CBF was 75.4 mL/100 g/min). Error analysis showed that structural information and baseline absorption coefficient were needed for optimal CBF reconstruction with DCE-NIRS. This study demonstrated that DCE-NIRS is sensitive to blood flow in the adult brain and can provide accurate CBF measurements with the appropriate modeling techniques.


Blood Flow Velocity/physiology , Brain/blood supply , Brain/diagnostic imaging , Cerebrovascular Circulation/physiology , Magnetic Resonance Imaging/methods , Spectroscopy, Near-Infrared/methods , Adult , Contrast Media/administration & dosage , Female , Humans , Indocyanine Green/administration & dosage , Male , Middle Aged , Perfusion , Reproducibility of Results , Sensitivity and Specificity , Spin Labels , Young Adult
15.
Neurosci Lett ; 714: 134607, 2020 01 01.
Article En | MEDLINE | ID: mdl-31693928

Motor imagery (MI) is a commonly used cognitive task in brain-computer interface (BCI) applications because it produces reliable activity in motor-planning regions. However, a number of functional near-infrared spectroscopy (fNIRS) studies have reported the unexpected finding of inverse oxygenation: increased deoxyhemoglobin and decreased oxyhemoglobin during task periods. This finding questions the reliability of fNIRS for BCI applications given that MI activation should result in a focal increase in blood oxygenation. In an attempt to elucidate this phenomenon, fMRI and fNIRS data were acquired on 15 healthy participants performing a MI task. The fMRI data provided global coverage of brain activity, thus allowing visualization of all potential brain regions activated and deactivated during task periods. Indeed, fMRI results from seven subjects included activation in the primary motor cortex and/or the pre-supplementary motor area during the rest periods in addition to the expected activation in the supplementary motor and premotor areas. Of these seven subjects, two showed inverse oxygenation with fNIRS. The proximity of the regions showing inverse oxygenation to the motor planning regions suggests that inverse activation detected by fNIRS may likely be a consequence of partial volume errors due to the sensitivity of the optodes to both primary motor and motor planning regions.


Functional Neuroimaging , Hemoglobins/metabolism , Imagination/physiology , Magnetic Resonance Imaging , Motor Activity , Motor Cortex/diagnostic imaging , Oxyhemoglobins/metabolism , Spectroscopy, Near-Infrared , Adult , Brain-Computer Interfaces , Female , Healthy Volunteers , Humans , Male , Motor Cortex/metabolism , Young Adult
16.
Biomed Opt Express ; 10(9): 4607-4620, 2019 Sep 01.
Article En | MEDLINE | ID: mdl-31565512

Diffuse correlation spectroscopy (DCS) is a noninvasive optical technique for monitoring cerebral blood flow (CBF). This work presents a stand-alone DCS system capable of monitoring absolute CBF by incorporating a quantitative dynamic contrast-enhanced (DCE) technique. Multi-distance data were acquired to measure the tissue optical properties and to perform DCE experiments. Feasibility of the technique was assessed in piglets in which the optical properties were measured independently by time-resolved near-infrared spectroscopy. A strong linear correlation was observed between CBF values derived using the two sets of optical properties, demonstrating that this hybrid DCS approach can provide real-time monitoring of absolute CBF.

17.
Biomed Opt Express ; 10(9): 4789-4802, 2019 Sep 01.
Article En | MEDLINE | ID: mdl-31565525

Near-infrared spectroscopy (NIRS) is considered ideal for brain monitoring during preterm infancy because it is non-invasive and provides a continuous measure of tissue oxygen saturation (StO2). Hyperspectral NIRS (HS NIRS) is an inexpensive, quantitative modality that can measure tissue optical properties and oxygen saturation (StO2) by differential spectroscopy. In this study, experiments were conducted using newborn piglets to measure StO2 across a range of oxygenation levels from hyperoxia to hypoxia by HS and time-resolved (TR) NIRS for validation. A strong correlation between StO2 measurements from the two techniques was observed (R2 = 0.98, average slope of 1.02 ± 0.28); however, the HS-NIRS estimates were significantly higher than the corresponding TR-NIRS values. These regression results indicate that HS NIRS could become a clinically feasible method for monitoring StO2 in preterm infants.

18.
Biomed Opt Express ; 10(2): 761-771, 2019 Feb 01.
Article En | MEDLINE | ID: mdl-30800513

In this paper, we propose the application of time-domain near-infrared spectroscopy to the assessment of oscillations in cerebral hemodynamics. These oscillations were observed in the statistical moments of the distributions of time of flight of photons (DTOFs) measured on the head. We analyzed the zeroth and second centralized moments of DTOFs (total number of photons and variance) to obtain their spectra to provide parameters for the frequency components of microcirculation, which differ between the extracerebral and intracerebral layers of the head. Analysis of these moments revealed statistically significant differences between a control group of healthy subjects and a group of patients with severe neurovascular disorders, which is a promising result for the assessment of cerebral microcirculation and cerebral autoregulation mechanisms.

19.
Neurocrit Care ; 30(1): 72-80, 2019 02.
Article En | MEDLINE | ID: mdl-30030667

BACKGROUND: Diffuse correlation spectroscopy (DCS) noninvasively permits continuous, quantitative, bedside measurements of cerebral blood flow (CBF). To test whether optical monitoring (OM) can detect decrements in CBF producing cerebral hypoxia, we applied the OM technique continuously to probe brain-injured patients who also had invasive brain tissue oxygen (PbO2) monitors. METHODS: Comatose patients with a Glasgow Coma Score (GCS) < 8) were enrolled in an IRB-approved protocol after obtaining informed consent from the legally authorized representative. Patients underwent 6-8 h of daily monitoring. Brain PbO2 was measured with a Clark electrode. Absolute CBF was monitored with DCS, calibrated by perfusion measurements based on intravenous indocyanine green bolus administration. Variation of optical CBF and mean arterial pressure (MAP) from baseline was measured during periods of brain hypoxia (defined as a drop in PbO2 below 19 mmHg for more than 6 min from baseline (PbO2 > 21 mmHg). In a secondary analysis, we compared optical CBF and MAP during randomly selected 12-min periods of "normal" (> 21 mmHg) and "low" (< 19 mmHg) PbO2. Receiver operator characteristic (ROC) and logistic regression analysis were employed to assess the utility of optical CBF, MAP, and the two-variable combination, for discrimination of brain hypoxia from normal brain oxygen tension. RESULTS: Seven patients were enrolled and monitored for a total of 17 days. Baseline-normalized MAP and CBF significantly decreased during brain hypoxia events (p < 0.05). Through use of randomly selected, temporally sparse windows of low and high PbO2, we observed that both MAP and optical CBF discriminated between periods of brain hypoxia and normal brain oxygen tension (ROC AUC 0.761, 0.762, respectively). Further, combining these variables using logistic regression analysis markedly improved the ability to distinguish low- and high-PbO2 epochs (AUC 0.876). CONCLUSIONS: The data suggest optical techniques may be able to provide continuous individualized CBF measurement to indicate occurrence of brain hypoxia and guide brain-directed therapy.


Arterial Pressure/physiology , Cerebrovascular Circulation/physiology , Hypoxia-Ischemia, Brain/diagnostic imaging , Hypoxia-Ischemia, Brain/physiopathology , Neurophysiological Monitoring/methods , Adult , Brain Injuries/diagnostic imaging , Brain Injuries/physiopathology , Coma/diagnostic imaging , Coma/physiopathology , Female , Humans , Male , Middle Aged , Neuroimaging/methods , Neuroimaging/standards , Neurophysiological Monitoring/standards , Optical Imaging/methods , Optical Imaging/standards , Spectroscopy, Near-Infrared/methods , Spectroscopy, Near-Infrared/standards
20.
Neurophotonics ; 5(4): 045006, 2018 Oct.
Article En | MEDLINE | ID: mdl-30480039

We investigate a scheme for noninvasive continuous monitoring of absolute cerebral blood flow (CBF) in adult human patients based on a combination of time-resolved dynamic contrast-enhanced near-infrared spectroscopy (DCE-NIRS) and diffuse correlation spectroscopy (DCS) with semi-infinite head model of photon propogation. Continuous CBF is obtained via calibration of the DCS blood flow index (BFI) with absolute CBF obtained by intermittent intravenous injections of the optical contrast agent indocyanine green. A calibration coefficient ( γ ) for the CBF is thus determined, permitting conversion of DCS BFI to absolute blood flow units at all other times. A study of patients with acute brain injury ( N = 7 ) is carried out to ascertain the stability of γ . The patient-averaged DCS calibration coefficient across multiple monitoring days and multiple patients was determined, and good agreement between the two calibration coefficients measured at different times during single monitoring days was found. The patient-averaged calibration coefficient of 1.24 × 10 9 ( mL / 100 g / min ) / ( cm 2 / s ) was applied to previously measured DCS BFI from similar brain-injured patients; in this case, absolute CBF was underestimated compared with XeCT, an effect we show is primarily due to use of semi-infinite homogeneous models of the head.

...